An Urban-Conscious Rapid Wind Downscaling Model for Early Design Stages

نویسندگان

  • Jihun Kim
  • Ali M. Malkawi
  • Yun K. Yi
چکیده

Assessments of urban contexts using existing microclimate models mostly fall short, when considering topographies along with complex layouts of buildings and streets, regardless of their significant influences on building performances and outdoor environments. The challenge exists mainly due to modelâ??s inherent complexities and the associated high computational costs. This becomes especially challenging at early design stages when time, expertise, and computational resources are limited, even though the opportunities for performance enhancement are greater than at later stages. This dissertation develops a wind downscaling model that can rapidly assess urban contexts to relate climate data in a large spatial resolution for a smaller-scale site. Surrounding slopes and terrains, up to a few kilometers in diameter, are considered to predict wind pressure on the volumetric boundary of a neighborhood and local wind speed. The new model strives for prediction accuracy and computational efficiency by employing the capacities of a computational fluid dynamics (CFD) simulation and of an existing mathematical method. The proposed model is composed of three parts: pressure database, speed database, and interpolation. The databases store wind data for existing urban contexts that are generated with CFD simulations. Using the databases, the interpolation approximates the pressure outcomes for a new urban context; thus, real-time CFD runs can be avoided for the model users. Independent development of data for pressure and speed facilitates the flexibility and expandability of the model. The proposed model showed an acceptable prediction accuracy, with average errors of less than 10%, compared to the full-scale CFD simulation for the same territorial scope. An exceptional computational efficiency is also shown, with a runtime in 0.308 seconds, which is 16568 times faster than the CFD simulation. This rate allows creation of a yearlong prediction in a few tens of minutes with a personal desktop computer. For non-experts, the pertinence of the model is enhanced with a limited number of parameters, making it easily adaptable during early design stages of buildings and urban design scales. Geometric sensitivities are embedded for incremental study, which is crucial to finding optimal solutions, toward more efficient, yet healthier, urban environments. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Architecture First Advisor Ali M. Malkawi This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1076 Second Advisor Yun K. Yi

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting

Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below...

متن کامل

Current Discussions on Digital Sketching in the Early Stages of Architectural Design in Education

In the architectural design, designers are focused on the early stages of the design process or conceptual design. The ultimate goal of this stage is to find a solution for an existing problem, investigate design space, or explore an idea. This stage conventionally begins with sketches and diagrams to explore ideas and solutions; the ambiguity and vagueness of conventional freehand sketching ca...

متن کامل

Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario

The Mediterranean basin is a particularly vulnerable region to climate change, featuring a sharply contrasted climate between the North and South and governed by a semi-enclosed sea with pronounced surrounding topography covering parts of the Europe, Africa and Asia regions. The physiographic specificities contribute to produce mesoscale atmospheric features that can evolve to high-impact weath...

متن کامل

Estimation of wind storm impacts over Western Germany under future climate conditions using a statistical–dynamical downscaling approach

The method is applied to North Rhine-Westphalia (Western Germany) using the FOOT3DK mesoscale model for dynamical downscaling and ECHAM5/OM1 global circulation model climate projections. The method first classifies typical weather developments within the reanalysis period using K-means cluster algorithm. Most historical wind storms are associated with four weather developments (primary storm-cl...

متن کامل

The Impact of Climate Change on Air Quality–Related Meteorological Conditions in California. Part I: Present Time Simulation Analysis

This study investigates the impacts of climate change on meteorology and air quality conditions in California by dynamically downscaling Parallel Climate Model (PCM) data to high resolution (4 km) using the Weather Research and Forecast (WRF) model. This paper evaluates the present years’ (2000–06) downscaling results driven by either PCM or National Centers for Environmental Prediction (NCEP) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015